Archives par mot-clé : quantique

QSDC : Une avancée majeure dans la communication quantique ?

La communication quantique aurait franchit un nouveau cap et s’impose comme une technologie clé pour l’avenir de la cybersécurité. Des chercheurs chinois auraient réussi à transmettre des données sur 104,8 km via une fibre optique, avec une vitesse stable de 2,38 Kbps (soit environ 2 380 bits par seconde, ce qui correspond à l’envoi d’un message texte d’environ 300 à 400 caractères, soit une cinquantaine de mots, chaque seconde). Cette prouesse technologique ouvre de nouvelles perspectives en matière de transmission sécurisée des informations.

Un bond technologique sans précédent ?

Des scientifiques de l’Université Tsinghua, en collaboration avec des experts de l’Académie des sciences de l’information quantique de Pékin et de l’Université de technologie de Chine du Nord, auraient accompli une percée significative dans le domaine de la communication quantique. Cette avancée s’inscrit dans un contexte de recherche intensive sur les technologies quantiques, où chaque progrès permet de repousser les limites de la transmission sécurisée des données.

En combinant des techniques innovantes avec des matériaux plus performants, les chercheurs ont pu surmonter certaines des principales contraintes, telles que la fragilité des états quantiques, les pertes de signal sur de longues distances et l’instabilité des qubits, qui entravaient jusqu’ici l’adoption à grande échelle de cette technologie. qui entravaient jusqu’ici l’adoption à grande échelle de cette technologie.

Grâce à leur nouveau protocole de communication directe quantique (QSDC), ils ont non seulement battu le record de distance pour la transmission sécurisée de données, mais ils ont également multiplié la vitesse de transmission par 4 760 par rapport à leurs travaux précédents.

Jusqu’à présent, les avancées en communication quantique étaient freinées par des limitations techniques, notamment en termes de vitesse et de stabilité. En 2021, la même équipe avait réussi à transmettre des données sur 100 km, mais à un débit extrêmement bas de 0,5 bits par seconde.

Une technologie sécurisée et efficace

Le protocole QSDC repose sur l’utilisation d’états quantiques uniques pour transmettre des informations, rendant ces dernières totalement immunisées contre toute tentative d’interception non autorisée. Contrairement aux méthodes de cryptographie traditionnelles qui nécessitent des clés de chiffrement, la communication quantique détecte immédiatement toute tentative d’espionnage, empêchant ainsi toute fuite de données.

L’un des progrès majeurs de cette nouvelle avancée est l’adoption d’une méthode de transmission unidirectionnelle. Ce procédé permet de réduire considérablement la perte d’états quantiques, garantissant ainsi une meilleure stabilité de la transmission. En parallèle, le système de codage des données a été optimisé pour minimiser l’impact du bruit, un facteur clé dans l’amélioration de la fiabilité de la communication.

« Cette avancée représente une révolution dans la protection des données, en garantissant une sécurité sans précédent aux transmissions numériques. »

Vers une adoption à grande échelle

La mise en application de cette technologie s’annonce prometteuse dans des secteurs nécessitant une protection renforcée des données. Les institutions financières, les agences gouvernementales ainsi que les systèmes d’infrastructures critiques sont les premiers candidats à bénéficier de cette avancée. Avec une transmission inviolable et fiable sur de longues distances, la communication quantique pourrait bien redéfinir les normes de sécurité numérique dans les prochaines décennies.

Le développement de réseaux de communication quantiques sécurisés s’inscrit dans une dynamique plus large d’avancées en informatique quantique. D’autres progrès notables incluent l’augmentation des capacités des processeurs quantiques, avec des entreprises comme IBM et Google développant des qubits plus stables et exploitables à grande échelle.

Le qubits, un terme étrange pour exprimer les bits quantiques, des unités fondamentales de l’information en informatique quantique, capables d’exister dans plusieurs états simultanément grâce au principe de superposition. Pour tenter de simplifier, DataSecurityBreach.fr y voir comme une pièce de monnaie qui tourne en l’air : tant qu’elle n’est pas retombée, on ne sait pas si c’est pile ou face. En informatique classique, un bit est soit un 0 soit un 1. Mais un qubit peut être les deux en même temps, ce qui lui permet de faire plusieurs calculs en parallèle et d’être bien plus puissant pour certaines tâches.

IBM a dévoilé son processeur quantique Condor à 1 121 qubits, actuellement le plus grand processeur quantique en termes de nombre de qubits, destiné à des applications de recherche avancées et à l’exploration de la tolérance aux erreurs quantiques, tandis que Google a démontré la suprématie quantique avec son processeur Sycamore, un dispositif à 53 qubits, qui a réalisé en 200 secondes un calcul qu’un superordinateur mettrait 10 000 ans à accomplir.

Google travaille également sur le processeur Bristlecone à 72 qubits, soit l’équivalent d’un immense orchestre où chaque musicien joue une note en même temps, mais avec la capacité unique d’être dans plusieurs tonalités simultanément. Il est conçu pour améliorer la correction d’erreurs quantiques et renforcer la stabilité des calculs, capable d’effectuer en 200 secondes un calcul qu’un superordinateur classique mettrait 10 000 ans à résoudre.

De plus, l’informatique quantique ouvre de nouvelles perspectives en intelligence artificielle, permettant de traiter des ensembles de données complexes avec une rapidité inégalée. Par exemple, les algorithmes quantiques pourraient révolutionner l’optimisation des réseaux de neurones, rendant l’entraînement des modèles IA des milliers de fois plus rapide. De plus, dans la découverte de nouveaux médicaments, la simulation quantique pourrait analyser instantanément des milliards de combinaisons moléculaires, accélérant ainsi le développement de traitements médicaux. Enfin, en finance, l’IA quantique pourrait améliorer la détection des fraudes en analysant d’énormes quantités de transactions en un temps record.

En cybersécurité, l’IA quantique pourrait améliorer la détection des cyberattaques en analysant en temps réel des anomalies dans le trafic réseau, rendant les menaces détectables bien plus tôt. De plus, les algorithmes de chiffrement post-quantique, combinant IA et informatique quantique, visent à créer des protocoles de sécurité résistants aux attaques des futurs ordinateurs quantiques capables de casser les méthodes de chiffrement classiques.

Toutefois, malgré ces avancées, des défis subsistent. Les systèmes quantiques sont sensibles aux perturbations extérieures, rendant leur mise en œuvre encore complexe. De plus, leur coût élevé constitue un frein à leur adoption massive. Néanmoins, les recherches actuelles visent à surmonter ces limitations pour rendre ces technologies plus accessibles et fiables à long terme. à grande échelle devient désormais une perspective réaliste. À mesure que la technologie évolue, son intégration dans les infrastructures existantes pourrait révolutionner le paysage numérique mondial.

« Une transmission 4 760 fois plus rapide qu’en 2022 ouvre la voie à des applications concrètes de la communication quantique. »

La course au quantique : Chine vs. États-Unis

Derrière ces avancées technologiques se cache une compétition féroce entre les grandes puissances mondiales. La Chine et les États-Unis se livrent une véritable course à la suprématie quantique, chacune investissant massivement dans la recherche et le développement de ces technologies révolutionnaires. Pékin avec des projets comme le satellite quantique Micius, premier satellite dédié à la communication quantique lancé en 2016, permettant des transmissions sécurisées entre la Chine et l’Autriche via l’intrication quantique et des infrastructures de communication ultra-sécurisées, comme le réseau quantique reliant Pékin à Shanghai, qui assure des communications protégées contre toute interception. De leur côté, les États-Unis, soutenus par des géants comme IBM et Google, travaillent sur des ordinateurs quantiques de plus en plus puissants et des réseaux sécurisés.

Cette rivalité technologique dépasse le cadre scientifique : elle revêt également des enjeux géopolitiques et économiques majeurs. La nation qui maîtrisera en premier la communication quantique à grande échelle pourrait redéfinir les normes de cybersécurité, de défense et de gestion des données sensibles dans le monde entier.

L’ère de la communication ultra-sécurisée est-elle sur le point de voir le jour ? Quels seront les prochains défis à surmonter avant une adoption généralisée de cette technologie ? Quels seront les prochains défis à surmonter avant une adoption généralisée de cette technologie ?

La menace quantique sur la cryptographie et la réponse de Google Cloud

L’avancée continue de l’informatique quantique expérimentale soulève des inquiétudes quant à la sécurité des systèmes de cryptographie à clé publique les plus utilisés dans le monde. Une fois suffisamment développés, ces ordinateurs quantiques pourraient briser ces algorithmes, menaçant la confidentialité des données et l’intégrité des transactions numériques.

Depuis août 2024, les nouvelles normes de cryptographie post-quantique (PQC) du National Institute of Standards and Technology (NIST) permettent aux entreprises technologiques d’amorcer leur transition vers des solutions plus sûres. Google Cloud vient d’annoncer la prévisualisation de signatures numériques quantiquement sûres (FIPS 204/FIPS 205) dans son service Google Cloud Key Management Service (Cloud KMS) pour les clés logicielles. Cette annonce marque une étape importante dans la stratégie post-quantique de Google, qui inclut également ses modules de sécurité matérielle (Cloud HSM) et l’ensemble de son infrastructure de chiffrement.

Une stratégie post-quantique déployée sur plusieurs fronts

Dès 2016, l’entreprise a commencé à tester la PQC dans Chrome, puis en 2022, elle a commencé à l’utiliser pour protéger ses communications internes. Depuis, elle a mis en place plusieurs mesures pour renforcer ses protections, notamment dans ses serveurs de centres de données et dans les connexions entre Chrome Desktop et ses services comme Gmail et Cloud Console.

Désormais, Google Cloud KMS s’oriente vers une sécurisation totale contre les menaces quantiques. Cela inclut le support des algorithmes PQC standardisés par le NIST (FIPS 203, FIPS 204, FIPS 205 et futurs standards) en logiciel et en matériel. Cette approche vise à permettre aux clients de Google Cloud d’importer et d’échanger des clés de manière sécurisée, d’exécuter des opérations de chiffrement et de déchiffrement et de générer des signatures numériques résistantes aux futures attaques quantiques.

Une transition vers une infrastructure cryptographique transparente

Dans le but de garantir une transparence totale et une auditabilité de son code, Google mettra à disposition les implémentations logicielles de ces standards pour Cloud KMS en open source. Elles seront intégrées aux bibliothèques cryptographiques ouvertes BoringCrypto et Tink, développées par Google. Cette initiative vise à permettre aux entreprises et aux experts en sécurité d’analyser ces algorithmes et de les intégrer à leurs propres solutions de sécurité.

De plus, Google collabore activement avec les fournisseurs de modules de sécurité matérielle (HSM) et les partenaires de Google Cloud External Key Manager (EKM) afin d’assurer une migration réussie vers une cryptographie post-quantique pour tous les clients de Google Cloud.

Lancement des signatures numériques quantiquement sûres dans Cloud KMS

Une avancée majeure de cette stratégie est l’introduction des signatures numériques quantiquement sûres dans Cloud KMS. Cette nouvelle fonctionnalité permet aux clients d’utiliser l’API Cloud KMS pour signer numériquement des données et vérifier les signatures à l’aide d’algorithmes PQC standardisés par le NIST. Cette évolution est essentielle pour aider les entreprises à tester et intégrer ces nouvelles méthodes dans leurs flux de travail avant leur adoption élargie.

Les nouvelles signatures numériques de Cloud KMS offrent deux algorithmes PQC récents : ML-DSA-65 (basé sur les réseaux euclidiens, spécifié dans FIPS 204) et SLH-DSA-SHA2-128S (une signature basée sur le hachage sans état, définie dans FIPS 205). Ces signatures sont conçues pour résister aux attaques des futurs adversaires disposant d’ordinateurs quantiques capables de casser les systèmes cryptographiques classiques.

Google remplace l’authentification par SMS par un code QR plus sécurisé

Aprés le quantique, les mots de passe et la double authentification. Google prévoit de modifier son système d’authentification en deux étapes (2FA) en abandonnant l’envoi de codes par SMS au profit d’un code QR. Cette nouvelle mesure vise à renforcer la sécurité des comptes et à limiter les risques liés à l’interception des SMS.

Le système actuel repose sur l’envoi d’un code à six chiffres par SMS pour vérifier l’identité de l’utilisateur. Cependant, Google estime que ce procédé présente des failles, notamment la possibilité d’interception des SMS par des cybercriminels. Ces derniers peuvent utiliser diverses techniques comme l’attaque par SIM swapping ou le phishing pour obtenir ces codes et compromettre les comptes des utilisateurs.

Bien que la vérification en deux étapes par SMS reste préférable à une absence totale de protection, elle demeure vulnérable à des attaques sophistiquées. Google cherche donc à améliorer la protection des comptes en adoptant une méthode plus robuste.

Le code QR, une alternative plus fiable ?

L’alternative envisagée par Google repose sur l’utilisation d’un code QR. Concrètement, lorsqu’un utilisateur tente de se connecter à son compte Google sur un nouvel appareil, il devra scanner un code QR avec son smartphone. Cette approche, similaire à celle utilisée par l’application Itsme, offre plusieurs avantages : Contrairement aux SMS, les codes QR ne transitent pas par un réseau mobile potentiellement vulnérable.  Un simple scan permet une authentification rapide sans nécessité de mémoriser ou de saisir un code. L’authentification par QR nécessite un accès physique à l’appareil de l’utilisateur, ce qui complique grandement les tentatives d’usurpation.

Google et la lutte contre les faux comptes

Outre l’amélioration de la sécurité individuelle, Google espère aussi limiter la création massive de faux comptes Gmail utilisés pour envoyer du spam ou mener des campagnes de phishing. Actuellement, les criminels peuvent générer des milliers de comptes en automatisant la réception et l’insertion de codes SMS. L’utilisation d’un code QR pour valider un compte complique ces pratiques et renforce la fiabilité des comptes créés.

Pour suivre l’actualité cybersécurité en temps réel, inscrivez-vous à la newsletter et rejoignez nos canaux WhatsApp et réseaux sociaux !

Promulgation de la loi Quantum Computing Cybersecurity Readiness Act

Le président américain Joe Biden met en place la loi Quantum Computing Cybersecurity Preparedness Act. Elle est censée protéger les systèmes et les données du gouvernement fédéral contre la menace de violations de données utilisant la technologie quantique.

Alors que des scientifiques chinois ont annoncé le crack de mots de passe (RSA) grâce au calcul quantique, les Etats-Unis se préparent à s’armer d’une loi pour se protéger ! La loi, baptisée Quantum Computing Cybersecurity Preparedness Act (QCCRA), est conçue pour protéger les systèmes et les données du gouvernement fédéral contre la menace de violations de données utilisant la technologie quantique. Cette loi porte sur la migration des systèmes informatiques des agences exécutives vers la cryptographie post-quantique.

La cryptographie post-quantique est un chiffrement suffisamment puissant pour résister aux attaques des ordinateurs quantiques développés à l’avenir. La loi ne s’applique pas aux systèmes de sécurité nationale.

Une fois que les National Institutes of Standards and Technology (NIST) ont publié des normes de cryptographie post-quantique, l’OMB publiera des directives exigeant que chaque agence exécutive élabore un plan de migration des technologies de l’information de l’agence vers la cryptographie post-quantique.

Les ordinateurs quantiques peuvent casser les algorithmes cryptographiques existants. Les experts estiment que l’informatique quantique atteindra ce stade dans les 5 à 10 prochaines années, rendant potentiellement toutes les informations numériques vulnérables aux acteurs de la cybermenace avec les protocoles de cryptage existants.

La loi (H.R. 7535) oblige chaque agence de créer et de maintenir une liste à jour des technologies de l’information utilisées pouvant être vulnérables au déchiffrement par des ordinateurs quantiques. Elles doivent également créer un processus d’évaluation des progrès de la transition des systèmes informatiques vers la cryptographie post-quantique. Ces exigences doivent être remplies dans les six mois suivant l’adoption de la loi.

Des experts chinois cassent le cryptage RSA à l’aide d’ordinateurs quantiques

Un groupe de chercheurs chinois a surpris la communauté de la cybersécurité en affirmant qu’ils avaient réussi à casser le type de cryptage le plus répandu sur le Web, le RSA. Pour cela, les experts ont utilisé des ordinateurs quantiques, bien qu’il soit généralement admis qu’ils ne constituent pas actuellement une menace pour l’ algorithme RSA.

Le Financial Times écrit sur la percée des spécialistes chinois. Fin décembre, les chercheurs ont publié un article (PDF) détaillant une méthode de craquage de l’algorithme RSA à l’aide d’un ordinateur quantique équipé de seulement 372 qubits (bits quantiques).

Rappelons que RSA est au cœur d’une grande partie du chiffrement en ligne. Les rapports d’un piratage réussi ont alerté les spécialistes de la sécurité de l’information, car IBM a promis cette année de mettre à la disposition des clients l’ordinateur quantique le plus puissant, le système Osprey à 433 qubits.

Il n’est pas difficile d’imaginer ce qui attend RSA dans ce cas : il ne survivra tout simplement pas. Roger Grimes, l’un des vénérables experts dans le domaine de la cybersécurité, a noté qu’il s’agit d’un moment très important dans l’histoire de la sphère de la cybersécurité (si les affirmations des experts chinois s’avèrent vraies). « En fait, cela signifie que les autorités d’un pays pourront révéler les secrets d’autres pays. », souligne Grimes.

On comprend mieux le choix des Américains de se pencher, rapidement, sur la Quantum Computing Cybersecurity Preparedness Act.